3.620 \(\int \frac{\sec ^{\frac{3}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=201 \[ \frac{(5 A+3 B-43 C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{2 C \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{5/2} d}-\frac{(A-B+C) \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac{(5 A+3 B-11 C) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(2*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) + ((5*A + 3*B - 43*C)*ArcTanh[(Sqrt
[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B + C
)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((5*A + 3*B - 11*C)*Sec[c + d*x]^(3/2)*S
in[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.596285, antiderivative size = 201, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.156, Rules used = {4084, 4019, 4023, 3808, 206, 3801, 215} \[ \frac{(5 A+3 B-43 C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{2 C \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{a^{5/2} d}-\frac{(A-B+C) \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac{(5 A+3 B-11 C) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(5/2)*d) + ((5*A + 3*B - 43*C)*ArcTanh[(Sqrt
[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A - B + C
)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ((5*A + 3*B - 11*C)*Sec[c + d*x]^(3/2)*S
in[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 4084

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*(a + b*Cs
c[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4019

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/
(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac{(A-B+C) \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{\int \frac{\sec ^{\frac{3}{2}}(c+d x) \left (\frac{1}{2} a (5 A+3 B-3 C)+4 a C \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(A-B+C) \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 A+3 B-11 C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{\int \frac{\sqrt{\sec (c+d x)} \left (\frac{1}{4} a^2 (5 A+3 B-11 C)+8 a^2 C \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{(A-B+C) \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 A+3 B-11 C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(5 A+3 B-43 C) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}+\frac{C \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx}{a^3}\\ &=-\frac{(A-B+C) \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 A+3 B-11 C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac{(5 A+3 B-43 C) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}-\frac{(2 C) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^3 d}\\ &=\frac{2 C \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac{(5 A+3 B-43 C) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(A-B+C) \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{(5 A+3 B-11 C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.60902, size = 204, normalized size = 1.01 \[ \frac{\cos ^5\left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (2 (5 A+3 B-43 C) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+\frac{\sin \left (\frac{1}{2} (c+d x)\right ) ((5 A+3 B-11 C) \cos (c+d x)+A+7 B-15 C)+64 \sqrt{2} C \cos ^4\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )}{\left (\sin ^2\left (\frac{1}{2} (c+d x)\right )-1\right )^2}\right )}{4 d (a (\sec (c+d x)+1))^{5/2} (A \cos (2 (c+d x))+A+2 B \cos (c+d x)+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(Cos[(c + d*x)/2]^5*Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(2*(5*A + 3*B - 43*C)*ArcTanh[S
in[(c + d*x)/2]] + (64*Sqrt[2]*C*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^4 + (A + 7*B - 15*C + (5*A
 + 3*B - 11*C)*Cos[c + d*x])*Sin[(c + d*x)/2])/(-1 + Sin[(c + d*x)/2]^2)^2))/(4*d*(A + 2*C + 2*B*Cos[c + d*x]
+ A*Cos[2*(c + d*x)])*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.381, size = 684, normalized size = 3.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/16/d/a^3*(-1+cos(d*x+c))^2*(-16*C*sin(d*x+c)*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)
*(cos(d*x+c)+1-sin(d*x+c)))+16*C*sin(d*x+c)*2^(1/2)*cos(d*x+c)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(c
os(d*x+c)+1+sin(d*x+c)))+5*A*sin(d*x+c)*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))-5*A*cos(d*
x+c)^2*(-2/(cos(d*x+c)+1))^(1/2)+3*B*sin(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-3*
B*(-2/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2-43*C*sin(d*x+c)*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^
(1/2))-16*C*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*sin(d*x+c)+16*C*2^
(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*sin(d*x+c)+11*C*cos(d*x+c)^2*(-2
/(cos(d*x+c)+1))^(1/2)+5*A*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+4*A*cos(d*x+c)*(-2/(cos
(d*x+c)+1))^(1/2)+3*B*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-4*B*(-2/(cos(d*x+c)+1))^(1/2
)*cos(d*x+c)-43*C*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+4*C*cos(d*x+c)*(-2/(cos(d*x+c)+1
))^(1/2)+A*(-2/(cos(d*x+c)+1))^(1/2)+7*B*(-2/(cos(d*x+c)+1))^(1/2)-15*C*(-2/(cos(d*x+c)+1))^(1/2))*(a*(cos(d*x
+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/sin(d*x+c)^5/(-2/(cos(d*x+c)+1))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 0.767072, size = 2064, normalized size = 10.27 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(sqrt(2)*((5*A + 3*B - 43*C)*cos(d*x + c)^3 + 3*(5*A + 3*B - 43*C)*cos(d*x + c)^2 + 3*(5*A + 3*B - 43*C
)*cos(d*x + c) + 5*A + 3*B - 43*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a
)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1
)) - 32*(C*cos(d*x + c)^3 + 3*C*cos(d*x + c)^2 + 3*C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos
(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)
/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) - 4*((5*A + 3*B - 11*C)*cos(d*x + c)^2 + (A + 7*
B - 15*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*
x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((5*A + 3*B - 43*C)*cos(d*x
+ c)^3 + 3*(5*A + 3*B - 43*C)*cos(d*x + c)^2 + 3*(5*A + 3*B - 43*C)*cos(d*x + c) + 5*A + 3*B - 43*C)*sqrt(-a)*
arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 32*(C*c
os(d*x + c)^3 + 3*C*cos(d*x + c)^2 + 3*C*cos(d*x + c) + C)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a
)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) - 2*((5*A + 3*B - 1
1*C)*cos(d*x + c)^2 + (A + 7*B - 15*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt
(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^(5/2), x)